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This paper extends the applicability of the Ritz-type method presented in
a previous publication [1] towards an advanced study of the in#uence of the edge
boundary conditions on the vibration characteristics of complete, cross-ply
laminated cylindrical shells. The analysis is based on a combination of the Ritz
method with appropriate, complete bases of orthonormal polynomials and its
subsequent application on the energy functional of the love-type version of
a uni"ed shear-deformable shell theory. As a result, two di!erent kinds of shear
deformable Love-type shell theories are employed, including versions that either
ful"l or violate the continuity of the interlaminar stresses through the shell
thickness. Apart from the study of the physical problem itself, several features
related to the theoretical model as well as to the analytical procedure are further
addressed and investigated. As far as the modelling is concerned, particular
emphasis is given to the version of the parabolic shear deformable shell theory that
considers continuity of interlaminar stresses. Moreover, the relation of this version
of the theory as well as its performance with respect to the corresponding older
version that violates this continuity requirement [8] is further investigated. It is
concluded that the accurate modelling of the interlaminar stress distribution may
become a serious issue for further investigation, as it already is for the stress
analysis of laminated composite structural elements. ( 1999 Academic Press
1. INTRODUCTION

A recent paper [1] initiated a study of the free vibration characteristics of
transverse shear deformable cross-ply laminated circular cylindrical shells on the
basic of the Ritz method. The analysis was based on the energy functional of the
Love-type version of the uni"ed shell theory present in reference [2]. As a result,
several kinds of shear deformable Love-type shell theories were employed, along
with their classical counterpart, and a version that accounts for continuity of the
022-460X/99/440749#20 $30.00/0 ( 1999 Academic Press
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interlaminar stresses was found to be a particular interest. The Ritz-type theoretical
formulation was given in a general form but the variational approach was "nally
applied in conjunction with a complete functional basic made up of the appropriate
admissible orthogonal polynomials. Despite that the method is capable of treating
cross-ply laminated circular cylindrical shells subject to any set of variationally
consistent edge boundary conditions, particular emphasis was given to the free
vibrations of shells having one or both of their edges free of external tractions.

The particular interest in the dynamic investigation of cylinders having one or
both of their edges free of external tractions is merely due to the fact that such
structural elements are very common in engineering applications and relatively
easy to achieve in a laboratory. The case of completely free shells, in particular,
constitutes a privileged class of structural elements for laboratory tests and, in this
respect, some of the relevant analytical results obtained in reference [1] were found
to be in a good agreement with corresponding experimental frequencies [3].
Moreover, the features and the e$ciency of the proposed Ritz-type analysis were
exhibited by comparing its results with the very few existing relevant results
obtained, elsewhere [4, 5], on the basis of the state space concept. These
comparisons showed a fast convergence of the method towards the exact frequency
values, regardless of the shell theory employed. It was also concluded that
orthonormal rather than simply orthogonal polynomial bases should be preferred,
particularly when higher vibration frequencies and mode shapes are sought.

Apart from the speci"c value of the dynamic investigation presented in reference
[1], its analysis was further considered as a successful test towards its extension for
the study of corresponding problems in which the state space concept cannot be
applied directly. Hence, the one-dimensional Ritz-type procedure has already been
extended to two dimensions towards the successful dynamic analysis of cross-ply
laminated plates and open cylindrical panels having all their four edge free of
traction [6] or being subjected to di!erent sets of edge boundary conditions [7].
However, there is still a considerable lack of corresponding information dealing
with the dynamic analysis of cross-ply laminated, shear deformable, complete
cylindrical shells subjected to di!erent sets of edge boundary conditions.

In an attempt to "ll the described lack of relevant information, this paper extends
the applicability of the Ritz-type method presented in reference [1] towards a study
of the in#uence of the edge boundary conditions on the vibration characteristics of
complete cross-ply laminated cylindrical shells. However apart from the study of
the physical problem itself, several features related to the theoretical model as well
as to the analytical procedure are further addressed and investigated. As far as the
modelling is concerned, particular emphasis is given to the version of the parabolic
shear deformable shell theory that considers continuity of interlaminar stresses
[1, 2, 5]. Moreover, the relation of this version of the theory as well as its
performance with respect to the corresponding older version that violates this
continuity of requirement [8] is further investigated. As far as the Ritz-type
procedure is concerned, further convergence tests are carried out in an attempt to
estimate the e$ciency of the method when di!erent sets of boundary conditions are
applied on the shell edges. It should be mentioned that the presentation of the
mathematical model employed in this paper is described in reference [1]. Hence,
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apart from some principal relevant features which are outlined in the next section
for the sake of self-consistency, the main contribution of the present study is related
to the mechanics of the dynamic problem considered and to the corresponding
interpretations revealed through the numerical results presented or the subsequent
discussion.

2. THEORETICAL FORMULATION

Consider a circular cylindrical shell having a constant thickness h, an axial
length ¸

x
, and a middle-surface radius R (Figure 1). The axial, circumferential and

normal to the middle surface-coordinate length parameters are denoted with x,
s and z, respectively, whereas ;, < and = represent the corresponding
displacement components. In accordance with the de"nition of a cross-ply material
arrangement [9], the shell is made up of an arbitrary number, ¸, of linearly elastic
orthotropic layers, the material axes of which coincide with the axes of the adopted
curvilinear co-ordinate system. Hence, under the usual thin shell theory assumption
of negligible transverse normal strains, the stress}strain relationships in the kth
layer (starting counting from the bottom layer) are given as follows (k"1, 2,2 ,¸):
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where the appearing reduced sti!ness are de"ned in reference [9].
The shell-type approximations employed in this study are consistent with the

general, shear deformable, Love-type shell theory, the main features and basic
Figure 1. Nomenclature and co-ordinate system of the laminated circular cylinder.
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equations of which are detailed in references [1, 2, 5]. It should be further speci"ed,
however, that two versions of the parabolic shear deformable shell theory will be
employed for the purpose of the present study, together with their classical shell
theory counterpart. One version (PAR

$4
) is based on the following choice of the

functions that dictate the through thickness distribution of transverse shear strains:

U
1
(z)"U

2
(z)"z (1!4z2/3h2), (2)

and, as a result, it is equivalent with the corresponding theory that violates the
continuity requirement of the interlaminar stresses [8]. The main model of interest
in this investigation is, however, a second version of the theory (PAR

#4
), which is

based on the corresponding shape functions developed in reference [7] and can
therefore account for the continuity of interlaminar stresses. It should be noted,
however, that both PAR

$4
and PAR

#4
coincide in the case of a homogenous shell, in

which material interfaces are not present. The classical shell theory (CST)
counterpart of both version of the shear deformable theory employed is obtained
by nullifying both of the afore-mentioned shape functions.

In accordance with the Ritz-type analysis followed in reference [1], the "ve
unknown displacement functions of the shear deformable model employed are
expressed in the following form:
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where t is the time, u is an unknown natural frequency of vibration and the
non-negative integer n represents the circumferential wave number of the
corresponding mode shape. The standard s-dependent parts in these
representations enable the satisfaction of all the periodicity requirements that
should hold around the circumference of a closed cylindrical shell. In the present
form of equations, the n"0 choice represents the torsional vibration pattern of the
cylindrical shell considered. The corresponding axisymmetric (longitudinal)
vibration pattern is chosen by keeping n"0 but by replacing the appearing sin and
cos functions with cos and sin respectively.

Each of the summation appearing in equations (3), represents a series expansion
of the unknown x-dependent part of the corresponding displacement function. The
set of the appearing basis functions employed in this paper are orthonormal
polynomials [10, 11] that satisfy all the geometric boundary conditions applied on
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the shell edges (x"0, ¸
x
). In more detail, given the "rst orthogonal polynomial,

t
1

(x), the remaining members of such a complete functional basic are constructed
according to the following recursive formulas [10]:
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Upon further dividing each one of its members by the square root of the norm:

E t
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the complete orthogonal polynomial basic thus developed is converted into
a corresponding orthonormal one.

The numerical results presented and discussed in the next section are for
cylindrical shells the edges of which are subjected to all six possible combinations of
certain simply supported, clamped and free boundary conditions. In more detail,
cylindrical shells having both their edges clamped, simply supported or free of
tractions will be referred to as CC, SS and FF shells, respectively. Similarly, shells
having one edge clamped and the other either simply supported or free of tractions
will be referred to as CS shells or CF shells, respectively, whereas shells having one
edge simply supported and the other free of tractions will be referred to as SF shells.
In each of these cases, the geometrical conditions satis"ed by all the members of the
afore-mentioned orthonormal polynomial basis, as well as the "rst polynomial
needed in the recursive formulas (4) for the construction of that basis, are given in
Table 1.

The 5M unknown coe$cients (3M in the case of a CST) that appear in equations
(3) are determined by solving the generalized algebraic eigenvalue problem of the
form

(K!u2 M) X"0, (6)

which is obtained by looking for the stationary values of the Hamiltonian of the
cylindrical shell considered (Ritz method). Details regarding the form of the
elements of the appearing 5M]5M sti!ness, K, and inertia, M, matrices (3M]3M
in the case of a CST) are given in reference [1]. It might useful to note here that, in
the n"0 case, the dimension of the K and M matrices is 2M if torsional vibrations
are sought whereas is 3M if longitudinal vibrations are studied. Due to the
completeness of the orthonormal polynomial bases employed in the corresponding
functional (Hilbert) space, the series expansions (3) determined after the successful
solution of the eigenvalue problem (6), approaches (asymptotically) the unique
solution of the dynamical problem considered as M approaches in"nity.



TABLE 1

Sets of boundary conditions employed and ,rst polynomial terms that generate the
orthogonal basis in the corresponding functions (Hilbert) space (m"x/¸

x
)

B.C. set Essential conditions First polynomial
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3. NUMERICAL EXAMPLES AND DISCUSSION

In order to check the reliability of the method, some successful comparisons were
initially performed in reference [1] with corresponding numerical results obtained
in reference [4, 5] on the basic of the state space concept. Since, however, reference
[1] dealt with certain cylinders having at least one of their curved edges free, these
comparisons were for open cylindrical panels having both their straight edges
simply supported and their curved edges free of external tractions [4] or for
cantilevered complete shells [5]. In the present paper, in which the barrier of the
edge boundary conditions is removed, the results of some further relevant
comparisons and convergence tests are initially performed in Tables 2}4 before
further new results are presented and discussed. It has to be emphasized, however,
that, despite the relatively large number of di!erent sets of boundary conditions
considered in this paper, there exist very limited relevant numerical results that are
based on alternative mathematical methods [12] or models [13].

For certain types of two- and four-layered SS and CC shells, Table 2 compares
the fundamental frequency parameters,

u*"uR Jo/E
2
, (7)

obtained on the basis of the present approach with the corresponding parameters
presented in reference [12]. Reference [12] was based on an CST model only, but it
dealt with the free vibration of angle-ply laminated cylindrical shells, the material



TABLE 2

Comparison of frequency parameters, u*, for di+erent wave numbers and polynomial
terms (¸

x
/R"2; h/R"0.0025)

Boundary Stacking Reference Full wave Present: CST
conditions sequence [12] numbers M

4 8 14
SS [903/03] 0)1246 8 0)12464 0)12462 0)12462

[03/903M 0)1200 8 0)12004 0)12003 0)12003
[03/903/03/903] 0)1412 7 0)14125 0)14124 0)14124
[903/03/903/03] 0)1431 7 0)14306 0)14305 0)14305
[03/903/903/03] 0)1170 8 0)11700 0)11698 0)11698
[903/03/03/903] 0)1649 6 0)16489 0)16487 0)16487

CC [903/03] 0)1535 8 0)15826 0)15351 0)15274
[03/903] 0)1517 8 0)15620 0)15174 0)15096
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arrangement of which contains the present cross-ply arrangement as a particular
case. Since CST approximations were only used in reference [12], all of the present
results obtained for the comparisons performed in Table 2 were similarly based on
the CST version of the present model. In this respect, the following material
properties that were used in reference [12]:

E
1
"15)59E

2
, G

12
"0)5366E

2
, l

12
"0)32, (8)

are still adequate for all the numerical results presented in Table 2.
The approach followed in reference [12] was based on the combination of the

Ritz method with double series expansions of the three unknown displacement
components. In more detail, simple powers of the x co-ordinate parameter were
essentially used in the x-part of those series expansions, the s-part of which made
use of certain trigonometric functions, similar to those employed in equations (3).
Upon setting a maximum, "xed, number for the circumferential terms involved,
that way [12] of tackling the problem prevents the use of n as an external data
parameter whereas it enables the ordering of the natural frequency parameters in
an ascending order. As is known on the other hand (see for instance references
[14, 15]), every single value of n represents a single vibration harmonic which,
either for cross- or for angle-ply laminated circular cylinders, is &&circumferentially''
uncoupled from the remaining ones. Hence, as far as the present case of cross-ply
laminates is concerned, the single-series expansions used in equations (3) are
&&circumferentially'' equivalent to those employed in reference [12]. As far as the
numerical solutions of the eigenvalue problem (6) is concerned, however, the
present series expansions are more economical. Under these considerations,
Table 2 also gives the value of n for which a fundamental frequency was detected,
a piece of information that is missing in reference [12]. Moreover, unlike reference
[12] that made use of a "xed value of terms in the axial series expansion (M"8),
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Table 2 shows corresponding results obtained for three di!erent values of
M (namely, M"4, 8 and 14), thus revealing further certain convergence aspect of
the present approach.

An excellent agreement is observed between the corresponding numerical results
that are compared in Table 2. For M"8, in particular, the two approaches
produce essentially identical numerical results. It is therefore concluded that, as far
as CST approximation are concerned, the present approach is essentially
equivalent to the one used in reference [12]. It is also of interest to note that the
M"8 and 14 terms truncations yield identical numerical results for SS shells but
slightly di!erent results for CC shells. This reveals that, as far as the SS shells are
concerned, eight orthonormal polynomial terms in equations (3) predict the natural
frequencies with an accuracy of "ve signi"cant "gures. In fact, even four polynomial
terms yield frequencies with an accuracy of four signi"cant "gures. This, however, is
not the case for CC shells for which, independently of the material arrangement, the
convergence of the results is eventually slower. This observations makes therefore
clear that changing the set of the edge boundary conditions a!ects the convergence
rate of the numerical results.

For FF homogeneous isotropic cylinders (l"0)3) and several values of the
circumferential wave number, n, Table 3 compares the lowest frequency
parameters,

u( "u (R#h/2) J(o/G), (9)

based on the present parabolic shear deformable theory, with corresponding results
obtained in reference [13] on the basic of a three-dimensional elasticity Ritz-type
analysis. Since a three-dimensional elasticity analysis, although computationally
more cumbersome, is always more accurate than a corresponding two-dimensional
one, Table 3 may also be seen as part of an attempt to test the range of validity of
the present shear deformable theory, at least as far as the isotropic materials are
concerned. Moreover, the in#uence of some characteristics properties of the shell
geometry on the rate of convergence of the present approach is also tested in
Table 3, where numerical results obtained by changing M from "ve to 16 are also
presented.

Most of the results presented in Table 3 on the basis of the present 2-D theory are
in extremely good agreement with the corresponding 3-D predictions, which are
assumed to be accurate up to four or "ve signi"cant "gures [13]. A smaller number
of slightly inaccurate frequencies predicted by the present theory are not enough to
change the very satisfactory picture of the comparisons performed in Table 3. As is
further discussed at the end of this section, this is because these are frequencies of
particularly short shells [¸

x
/(R#h)"0)2] and may therefore be particularly

in#uenced by the di!erent sense (3-D or 2-D) in which the edge boundary
conditions are applied in the two studies. Moreover, they are frequencies associated
with antisymmetric vibration modes and, as such, are not among the lowest
vibration shell frequencies, all of which were always in excellent agreement with
their 3-D counterparts. As far as the rate of convergence is concerned, the present
approach appears to converge slower when longer and therefore more #exible than
shorter and therefore less #exible cylinders are considered. On an average, however,
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an accuracy of three to four or four to "ve signi"cant "gures can be achieved when
eight of 14 polynomial terms are, respectively, retained in equations (3).

The in#uence of the boundary conditions on the convergence rate of the present
approach is next demonstrated in Table 4 where, for n"2, the value of the "rst and
the fourth frequency parameter,

u6 "
u¸2

x
h

Jo/E
2
, (10)

of certain two- and three-layered shells is tabulated as a function of the number
M of the polynomial terms retained in equations (3). All the cylindrical shells
involved in Table 4, as well as in the remaining tables and "gures throughout this
section, are assumed to have been made of a certain number of specially
orthotropic layers, all of which have the following material properties:

E
1
/E

2
"25, G

12
/E

2
"G

13
/E

2
"0)5; G

23
/E

2
"0)2, l

12
"0)25. (11)

Upon considering the percentage di!erence between the corresponding
frequencies predicted by using M"14 and 16 polynomial terms, it can be easily
veri"ed that the fastest convergence rates are always associated with SS and FF
shells. Moreover, a faster convergence is always achieved for an antisymmetric than
a corresponding symmetric cross-ply lay-up whereas the convergence rate does not
appear to be a!ected by whether the PARds or PARcs model is considered. With 14
polynomial terms being able to provide accurate results up to four or "ve
signi"cant "gures, it was "nally decided that M"14 will be used in equations (3)
for the predictions of all of the remaining results presented and discussed in this
section. Moreover, all the results shown next were obtained on the basis of the
PARcs model.

Tables 5}10 present the "rst four frequency parameters obtained for several
values of the circumferential wave number, n, of certain three-layered symmetric
and two-layered antisymmetric cross-ply laminated cylindrical shells subjected to
six di!erent sets of edge boundary conditions. It should be noted that, in all cases
considered in Tables 5}10, the fundamental frequency occurs as the lowest
frequency of the n"2 mode, a fact that explains why this circumferential mode was
chosen for the convergence tests performed in Table 4. Apart from the well-known
trend [16, 17] according to which the fundamental vibration frequency of complete
cylindrical shells is not necessarily associated with the lowest circumferential wave
number, no other remarkable general trend can be drawn from the results shown in
Tables 5}10. It is denoted, however, that for both the symmetric and the
antisymmetric lay-up, the lowest fundamental frequency occurs for the FF cylinder
(26)575 and 41)057, respectively), whereas the SF cylinder produces a slightly higher
fundamental frequency (27)058 and 41)281 respectively). The manner in which the
value of the fundamental frequencies is further increasing shows then that,
regardless of the material arrangement, the order in which the boundary conditions
can gradually increase the &&global dynamic sti!ness'' of the shell is as follows: FF,
SF, CF, SS, CS and CC.

At this point, it is of particular interest to report a similar trend that can be
observed through the numerical results tabulated in reference [18]. These results



TABLE 5

First four frequency parameters, uN , for di+erent values of n (CC, ¸
x
/R"5,

h/R"0)05; PARcs)

[03/903/03] [03/903]

n I II III IV I II III IV

1 159)31 317)50 476)94 633)81 155)16 308)28 462)33 611)55
2 107)71 213)82 331)36 455)08 105)57 198)92 301)70 404)80
3 108)05 179)75 274)33 382)48 134)16 181)38 248)92 324)86
4 157)23 201)16 274)45 369)05 225)79 246)75 285)06 336)82
5 237)70 265)71 320)08 399)35 354)30 365)43 387)84 421)96
7 460)98 476)61 509)06 562)24 693)81 699)34 710)60 728)93
10 920)32 930)57 950)76 983)89 1373)2 1376)9 1383)80 1394)9

TABLE 6

First four frequency parameters, uN , for di+erent values of n (SS, ¸
x
/R"5, h/R"0)05;

PARcs)

[03/903/03] [03/903]

n I II III IV I II III IV

1 151)49 310)57 353)55 466)61 147)94 305)03 353)54 457)22
2 92)574 199)81 311)75 430)82 92)420 191)76 291)93 392)45
3 95)368 162)94 250)28 352)51 126)13 173)42 237)76 310)28
4 150)42 186)82 250)99 338)08 226)26 241)20 276)04 323)65
5 233)97 255)33 300)58 371)18 352)56 361)87 381)51 411)87
7 459)42 471)07 497)26 542)92 693)18 697)57 707)19 723)14
10 919)60 927)79 944)59 973)27 1373)0 1375)9 1381)9 1391)7
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dealt with the free vibration and buckling under axial compression of certain
[03/903/03] and [03/903] cylindrical and spherical shallow shell panels having
a rectangular plan form. Assuming that these panels have two opposite edges
simply supported. Librescu et al. [18] applied to the partial di!erential equations of
the shell theories employed the Levy approach in conjunction with the state space
concept. Hence, using exact mathematical means, reference [18] tabulates free
vibration and buckling results for plates and shallow shells having two opposite
edges simply supported and the other two edges subjected to di!erent sets of
boundary conditions. Though not explicitly stated in reference [18], these results
clearly show that, regardless of the material arrangement, the order in which the
boundary conditions can gradually increase the &&global dynamic sti!ness'' but also
the corresponding &&global buckling sti!ness'' of the structure is precisely the same.
Namely: FF, SF, CF, SS, CS and CC.



TABLE 7

First four frequency parameters, uN , for di+erent values of n (FF, ¸
x
/R"5,

h/R"0)05; PARcs)

[03/903/03] [03/903]

n I II III IV I II III IV

1 304)13 338)10 485)88 612)92 297)23 335)49 479)71 599)56
2 26.575 28)418 185)42 285)75 41)057 41)931 176)74 270)60
3 74)905 77)008 145)75 226)52 115)25 116)32 160)27 222)35
4 142)93 145)14 174)08 230)31 219)17 220)30 234)81 266)54
5 229)74 231)97 247)62 285)05 351)05 352)14 359)14 376)35
7 456)60 458)78 467)98 489)35 692)18 693)14 697)03 705)58
10 917)18 919)22 926)46 941)08 1372)1 1372)9 1375)8 1381)5

TABLE 8

First four frequency parameters, uN , for di+erent values of n (CC, ¸
x
/R"5,

h/R"0)05; PARcs)

[03/903/03] [03/903]

n I II III IV I II III IV

1 74)326 224)19 388)86 541)98 71)692 216)15 378)72 524)89
2 48)944 137)16 255)64 370)91 55)869 130)50 239)19 340)15
3 79)329 120)96 205)15 300)35 117)66 142)01 202)58 272)50
4 144)50 163)33 216)16 292)52 220)01 228)72 256)38 298)49
5 230)72 241)80 275)29 333)42 351)53 356)16 370)59 395)88
7 457)31 464)19 482)77 518)34 692)48 695)20 702)26 715)18

10 917)79 923)10 935)60 958)22 1372)3 1374)4 1379)0 1387)1
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For certain [03/903/03] and [03/903] shells having FF, SS and CC edges, Tables
11}13 show the in#uence of the ¸

x
/R ratio on the "rst and the fourth frequency

parameters, u6 , obtained for n"4 and 10. These results are based on the the PARcs
model and, apart from their individual merit and interest, they are further used for
the plots drawn in Figs. 2}4. For the results tabulated in Tables 11}13, Figures 2}4,
respectively, show the percentage di!erence,

*u(I)%"[u6 (I)
PAR$4

!u6 (I)
PAR#4

] ) 100/u6 (I)
PAR#4

(12)

of the corresponding frequency parameters that are based on the PARds and
PARcs models. The form of equation (12) makes clear that the positive (negative)
percentage di!erences reveal that the PARds model predicts higher (lower)
frequencies than the PARcs model does. It should be also mentioned, however, that



TABLE 9

First four frequency parameters, uN , for di+erent values of n (CS, ¸
x
/R"5,

h/R"0)05; PARcs)

[03/903/03] [03/903]

n I II III IV I II III IV

1 153)77 314)02 471)65 627)02 149)60 306)67 459)62 608)05
2 98)698 206)81 321)31 442)81 97)648 195)50 296)65 398)57
3 100)95 171)24 261)97 367)30 129)68 177)52 243)17 317)45
4 153)40 193)73 262)32 353)31 223)83 243)99 280)39 330)06
5 235)59 260)22 309)91 384)95 353)33 363)62 384)55 416)74
7 460)10 473)64 502)86 552)27 693)46 698)42 708)82 725)92
10 919)93 929)09 947)53 978)40 1373)1 1376)4 1382)8 1393)3

TABLE 10

First four frequency parameters, uN , for di+erent values of n (SF, ¸
x
/R"5,

h/R"0)05; PARcs)

[03/903/03] [03/903]

n I II III IV I II III IV

1 211)13 337)13 405)63 544)39 206)48 334)04 400)64 535)48
2 27)058 132)30 244)94 359)78 41)281 128)28 232)86 334)66
3 75)441 115)64 194)46 287)77 115)51 139)20 197)16 266)61
4 143)49 159)51 207)22 279)99 219)42 226)97 252)76 293)45
5 230)31 239)34 268)78 322)66 351)28 355)12 368)32 392)22
7 457)16 462)92 479)24 511)56 692)40 694)70 701)12 713)14
10 917)72 922)43 933)73 954)54 1372)3 1374)1 1378)4 1386)0
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unlike the present situation, the requirement of the continuous interlaminar stresses
becomes essentially immaterial when the transverse shear moduli that correspond
to consecutive layers do not di!er considerably. As a matter of f act, the PARds and
PARcs model become essentially equivalent when the ratio of these moduli
approaches 1 (see also reference [19]).

Figure 2 reveals that, for either [03/903/03] or [03/903] shells having FF edges,
the PARds model always produces lower vibrations frequencies whereas the
percentage di!erence between the PARds and the PARcs frequencies are essentially
independent of the ¸

x
/R ratio. Moreover, these percentage di!erences are higher

for the antisymmetric cross-ply lay-up whereas they are increasing with increasing
the circumferential wave number. Figures 3 and 4 make evident that these
observations still apply to relatively long and to long shells (¸

x
/R'2) having SS



TABLE 11

First and four frequency parameters, uN , for di+erent ¸
x
/R ratios (FF, h/R"0)05;

PARcs)

[03/903/03] [03/903]

I IV I IV

¸
x
/R n"4 n"10 n"4 n"10 n"4 n"10 n"4 n"10

0)2 0)22857 1)4668 9)9023 13)270 0)35058 2)1946 10)675 10)936
0)4 0)91429 5)8673 20)987 21)870 1)4024 8)7788 14)456 21)343
0)6 2)0572 13)202 26)794 48)321 3)1555 19)753 19)871 41)618
0)8 3)6575 23)472 34)380 64)049 5)6099 35)118 33)836 55)119
1 5)7152 36)676 53)317 78)144 8)7657 54)873 45)273 72)863

1.5 12)861 82)530 85)785 121)23 19)724 123)47 62)836 138)14
2 22)865 146)73 103)00 181)26 35)065 219)51 81)92 232)42

2)5 35)729 229)27 120)15 260)46 54)790 342)99 103)86 354)82
3 51)451 330)17 138)47 358)91 78)898 493)92 128)99 505)00
4 91)473 586)98 180)23 612)65 140)27 878)11 189)95 888)21
5 142)93 917)18 230)31 941)08 219)17 1372)1 266)54 1381)5
6 205)82 1320)8 289)96 1343)5 315)61 1975)8 359)79 1984)8
7 280)15 1797)7 360)07 1819)8 429)59 2689)3 470)29 2698.0
8 365)92 2348)1 441)23 2369)6 561)10 3512)6 598)39 3521)0
9 463)12 2971)8 533)83 2992)9 710)15 4445)6 744)23 4453)8
10 571)76 3668)9 638)08 3689)8 876)75 5488)4 907)89 5496)5
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and CC boundaries respectively. For short shells, however, the edge boundary
conditions come into play and although they have a relatively moderate e!ect for
SS shells (Figure 3), they a!ect these di!erences dramatically for CC shells (Figure
4). It is of interest to notice in this respect that, although the di!erences shown in
Figure 3 for SS shells are always kept within acceptable engineering limits (less than
5%), they became as high as !11 or !18% for very short CC shells having
a [03/903/03] or [03/903] lay-up respectively (Figure 4). It should not be ignored
on the other hand, that is such cases of very short shells in which two-dimensional
shell theories either neglect or grossly approximate some of the boundary-layer
edge e!ects, the accuracy of the present two-dimensional shell theory may become
questionable. For the accurate dynamic analysis of short or even relatively long
laminated composite shells subjected to di!erent sets of boundary conditions, the
modelling of the interlaminar stress distribution may becomes a serious issue for
further investigation, as already is for the stress analysis of such elements (see, for
instance, references [20}23]).

There are also, however, cases of edge boundary conditions in which, despite the
particularly small axial length of the shell, two-dimensional shear deformable
theoreies have produce free vibration results that are in very good agreement with
the corresponding results based on the exact three-dimensional elasticity analyses.
Apart from most but not all of the relevant results presented in Table 3 for FF



TABLE 12

First four frequency parameters, uN , for di+erent ¸
x
/R ratios (SS, h/R"0)05; PARcs)

[03/903/03] [03/903]

I IV I IV

¸
x
/R n"4 n"10 n"4 n"10 n"4 n"10 n"4 n"10

0)2 2)2627 5)6569 15)421 25)654 2)2616 5)6383 15)328 25)355
0)4 9)0510 11)578 41)433 41)780 7)2294 11)253 39)870 40)632
0)6 12)884 18)430 55)252 56)571 9)3674 21)595 47)780 51)374
0)8 15)326 28)011 68)249 90)510 12)039 36)656 53)875 90)213
1 17)771 40)667 79)928 120)8 15)295 56)242 59)442 107)36

1.5 24)991 85)741 127)28 173)83 26)153 124)63 111)87 164)92
2 34)524 149)59 184)77 235)41 41)099 220)57 131)82 253)05

2)5 46)705 231)95 211)21 311)45 60)300 343)99 154)73 371)61
3 61)670 332)73 235)63 405)31 83)851 494)88 181)07 519)38
4 100)22 589)45 284)34 650)67 144)19 879)03 244)73 899)88
5 150)42 919)60 338)08 973)27 222)26 1373)0 323)65 1391)7
6 212)32 1323)2 399)85 1371)9 318)08 1976)7 418)45 1994)1
7 285)88 1800)1 471)04 1845)4 431)59 2690)2 529)64 2706)6
8 371)05 2350)5 552)39 2393)4 562)76 3513)5 657)58 3529)1
9 467)80 2974)2 644)36 3015)4 711)56 4446)6 802)56 4461)5
10 576)08 3671)3 747)27 3711)1 877)95 5489)4 964)80 5503)9

TABLE 13

First four frequency parameter, uN , for di+erent ¸
x
/R ratios (CC, h/R"0)05; PARcs)

[03/903/03] [03/903]

I IV I IV

¸
x
/R n"4 n"10 n"4 n"10 n"4 n"10 n"4 n"10

0)2 8)6127 8)7420 20)782 29)929 8)7128 8)9679 21)600 28)431
0)4 13)485 14)612 47)888 70)673 12)023 14)746 51)114 69)844
0)6 18)020 22)156 88)003 88)919 14)414 24)170 85)296 87)247
0)8 21)997 31)910 106)50 108)74 16)876 38)490 97)612 103)16
1 25)557 44)358 124)62 129)35 19)801 57)617 107)68 120)00

1.5 33)931 88)519 165)93 184)40 29)953 125)47 128)66 176)55
2 43)375 151)65 201)29 248)10 44)554 221)19 149)01 262)26

2)5 55)113 233)55 232)16 325)31 63)658 344)49 171)50 378)80
3 69)629 334)02 260)23 419)29 87)231 495)31 197)13 525)15
4 107)50 590)37 313)53 663)21 147)68 879)36 259)22 903)95
5 157)23 920)32 369)05 983)89 225)79 1373)2 336)82 1394)9
6 218)70 1323)7 431)00 1380)8 321)52 1976)9 430)67 1996)7
7 291)84 1800)6 501)60 1853)1 434)86 2690)4 541)25 2708)9
8 376)59 2350)9 582)07 2400)1 565)82 3513)7 668)86 3531)1
9 472)91 2974.6 673.12 3021.2 714.37 4446.7 813)74 4463)4
10 580)79 3671)7 775)16 3716)4 880)53 5489)5 976)03 5505)6
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Figure 2. Percentage di!erence between PARds and PARcs models through ¸
x
/R ratio with

completely free boundary conditions. (j n"42d* n"10 [03/903/03]: FF) (j n"4*d* n"10
[03/903]: FF).

Figure 3. Percentage di!erence between PARds and PARcs models through ¸
x
/R ratio with

simply supported boundary conditions. (j n"4 2d* n"10 [03/903/03]: SS) (j n"4 *d*
n"10 [03/903]: SS).

Figure 4. Percentage di!erence between PARds and PARcs models through ¸
x
/R ratio with

clamped boundary conditions. (j n"4 2d* n"10 [03/903/03]: CC) (j n"4 *d* n"10
[03/903]: CC).
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shells, short cylindrical shells having both their edges simply suppoprted are
de"nitely included in this category [5, 24]. It is worth mentioning in this connection
that, when dealing with a family of particularly short SS shells and using M"8, the
present approach predicted identical vibration frequencies to those tabulated in
Table 2 of reference [5] for either the PARcs or PARds model. These frequencies
[5] were obtained on the basis of the state space concept and, as already mentioned,
were found to be in very good agreement with the corresponding results based on
an exact three-dimensional elasticity analysis [25].

4. CONCLUSIONS

This paper extended the applicability of the Ritz-type procedure presented in
reference [1], towards an advanced study of the in#uence of the edge boundary
conditions on the vibration characteristics of complete cross-ply laminated
cylindrical shells. This analysis was based on the conjunction of the Ritz method
with appropriate, complete bases of orthonormal polynomials and its subsequent
application on the energy functional of the Love-type version of a uni"ed shear-
deformable shell theory. As a result, two di!erent kinds of shear deformable
Love-type shell modes were employed, including versions that either ful"l (PARcs)
or violate (PARds) the continuity of the interlaminar stresses along the shell
thickness. Both models are, however, based on a well-known polynomial form of
the shape functions, which is given according to equations (2).

As far as the performance of the method is concerned, an excellent agreement was
observed with corresponding numerical results obtained in reference [12] on the
basis of a classical shell theory. Moreover, a very good agreement was observed
with a rather limited number of existing relevant results that were obtained in
references [5, 13, 25] on the basis of more accurate, but computationally more
cumbersome, three-dimensional elasticity analyses. It should be noted in this
respect, that reference [13] dealt with homogeneous isotropic cylindical shells
having both their edges free of traction whereas the three-dimensional elasticity
results presented in references [5, 25] were for a family of very short cross-ply
laminated cylindrical shells having both their edges simply supported.

As far as the modelling is concerned, particular emphasis was given to the version
of the parabolic shear deformable shell theory that considers continuity of the
interlaminar stresses. Moreover, the relation of this version of the theory as well as
its performance with respecdt to the corresponding older version that violates this
continuity requirement [8] was further investigated. It was concluded, in this
respect, that the accurate modelling of the interlaminar stress distribution may
become a serious issue for further investigation, particularly for short shells.'
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